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Solitons in resonant energy transfer 

by MICHAEL A. COLLINS 
Research School of Chemistry, Australian National University, 

P.O. Box 4, Canberra, A.C.T. 2600, Australia 

The way in which localized ‘soliton states’ arise in systems with resonant energy 
transport is reviewed. This localization of energy in a mobile ‘packet’ arises from the 
coupling of internal states with molecular motions via a feedback mechanism. The 
connection between classical and quantum treatments of this process is discussed. 

1. Introduction 
Resonant energy transfer between similar molecules or groups is an efficient 

mechanism for energy transport in atomic and molecular systems. The relatively slow 
rates for vibrational to translational, or electronic to translational, energy exchange are 
in contrast to the rapidity with which large quanta of energy can be exchanged between 
corresponding modes of similar molecules. 

The theoretical study of electronic states in molecular crystals is one area where the 
role of resonance interactions is central, as explained in the well known texts (Davydov 
1971, Craig and Walmsley 1968). In recent years, several authors (Davydov and 
Kislukha 1973, 1976, Scott 1982 a, b, 1983, Collins and Craig 1983) have drawn 
attention to the existence of localized, though mobile, states which arise as a 
consequence of the coupling of resonance interactions and molecular motions. 
Considerable interest has been generated by the application of those ideas to biology, in 
particular to energy transport in DNA molecules (Davydov et al. 1978, Davydov 1979, 
1982, Scott 1982a, b). 

In the a-helix of figure 1, there are one-dimensional chains of amide groups, 
hydrogen bonded across the spiral. Of the amide group vibrations, one, essentially a 
C =  0 stretch with excitation energy near 1650 cm- ’, is strongly coupled to neighbour- 
ing group motions. A similar effect can be seen in crystalline acetanilide (Careri et al. 
1983, 1984). 

The resonant transport of such vibrational quanta and electronic excitations in 
molecular crystals have both been modelled in recent times in terms of solitons: 
localized, highly stable (Eilbeck et al. 1984, Carr and Eilbeck 1985), travelling waves. In 
this short article we re-present, without laborious proofs, the way in which these 
localized states arise within acceptable approximations to the exact mechanics. 

2. The model 
We consider a chain of moieties (atoms, molecules, groups of atoms) which is one 

dimensional in the sense that a single coordinate specifies the group position and each 
group has only two nearest neighbours. For example, we could consider the radial 
motion of carbon atoms in benzene using such a model. Denoting this single coordinate 
by U, we can number a chain of N groups arbitrarily from n = 1 to n = N ,  and label the 
coordinates U,. Each group has an internal degree of freedom (rotational, vibrational 
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204 M. A .  Collins 

Figure 1 .  A right-handed a-helix is shown in which three chains of amide groups can be seen. 
Each chain has its units coupled by hydrogen bonds across the spiral. 

or electronic) whose orthogonal ground and first excited states we denote as 10,) and 
11,) respectively. We define the creation and annihilation operators B! and Bn by 

(1) B!tOn) = Iln); BnIln) = Ion); BnIOn)=O 

For simplicity we assume that higher excited states are energetically inaccessible and 
that only one excitation is present in the chain so that whether the excitations are 
bosons or fermions is irrelevant. Moreover, we assume that only nearest-neighbour 
interactions occur and depend solely on the relative displacement or 'bond length'. 

r n = U n - U n - l  (2) 

With these definitions, the model hamiltonian is written simply as 

where 

is the ground state hamiltonian for the relative displacements, r,, and their momenta, 
p n .  Thus, if the nth group is excited, the energy changes by the 10) to 11) excitation 
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Solitons in resonant energy transfer 205 

energy A&, and also by changes, D(r), in the nearest-neighbour interactions. For 
example, the group may have different electrostatic moments in its ground and first 
excited states. Moreover, if the excitation is transferred between sites there is an 
associated resonance energy M(r). Normally, we expect that the resonance interaction 
lowers the total energy and is attractive. The same applies to D(r). To eliminate 
unnecessary parameters we introduce dimensionless variables and take the simplest 
forms for the potential energy functions, setting 

V(r) = 3 k(r - req)’ 

Yn = (rn -req)lreq 
Pn = pn[4mkr&] - ‘ I 2  

D(r)=(-Do+D,y)4krzq, D,,D, >O 

M(r)  = (- M o  + Mly) 4kr2q, M,,  M, >O 

h = H/4kr& 

z = (4k/rn)l/’t 

So that, 

(4) 

3. Stationary states 
Let us now proceed to obtain the stationary states for (5), in the usual way, by 

assuming a Born-Oppenheimer separation between the internal states and the 
displacements U,. Thus, we write a trial form only for the internal state of the whole 
chain 

N N 

where 

by normalization. Here each site may be excited with some probability 1uJ2. 
The complex coefficients an are determined by the variational method 

giving the familiar secular equations 

Ean = CAE- 2 0 ,  + D I ( Y ~  + Y n  + l ) l a n  - ( M o  - M IY&n - 1 - (Mo - M 1Yn + 1 b n  + 1 (9) 

We complete the usual approach by ‘optimising the geometry’, that is finding the 
minimum on the Born-Oppenheimer potential energy surface: 

-=0 
aE 
dY, 
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206 M .  A.  Collins 

which implies 

(1 1) 
Yfl 
4 - + D 1 “a,l ’ + la, - , 1’3 + M 1 [a:a, - 1 + a,a:- 11 = 0 

where a,* is the complex conjugate of a,. In the usual case, when M(r)  and D(r) provide 
attractive forces ( M , , D ,  >O) ,  the solution of (9) and (11) is a localized state for long 
chains. Clearly, if there is a higher than average probability that the excitation is at n or 
n - 1, the bonding is stronger between these sites, and a stronger bond implies a shorter 
bond, via (1 1). But a shorter bond makes M(r) (and D(r)) larger, more attractive, thus 
lowering the energy and inducing a,- and a, to become even larger still. There is a 
positive feedback mechanism (Collins 1983) localizing the excitation and contracting 
the bonds until a balance is reached with the { V(r,)}. If the stationary state can be 
described in a continuum approximation in the sense that 

then (9) and (1 1) combine, on neglect of higher-order derivatives and powers (Collins 
and Craig 1983), to give the non-linear Schrodinger equation: 

+(As- 20, -2M0)u(n)- l6[M, + Dl]’1a(n)~’a(n) (12) 

For an infinite chain, a localized state is one for which a(n)+O as n+ f 00. Equation 

d ’u(n) 
dn’ 

Ea(n) = - M ,  ~ 

(12) has a localized solution of this type: 

a(n)= [2(M1 +D1)2/M0]1/2 sech [4(Ml +Dl)2(n-n , ) /Mo]  (13) 
where no is arbitrary. Figure 2 depicts the probability distribution lanlZ and the 
corresponding bond lengths for two choices of no. 

To complete the quantum description we need the states associated with the ‘slow’ 
variables in the Born-Opperheimer separation, the relative displacements y,. 

Using (13) in the continuum limit, the zeroth-order energy surface is given by 

E,(Yl,Y,, . . . , Y n ) =  <w4Pl = P z  = . . . =P,=O)l$) 

+ 1 N 1  i{y,+ 16(D$0M1)3 sech2 [4(D, +M1)2(n-n , )2 /M,]  
n =  1 

To this order, the coordinates are associated with harmonic phonon modes only 
displaced in origin as depicted in figure 2. We note that the energy of this localized 
‘soliton’ state is lower than that of the plane-wave exciton approximation by 
16(D1 +MJ4/(3M,), strongly dependent on the coupling parameters, M ,  and D,. 

The normal Born-Oppenheimer procedure is to evaluate the energy 
E(y,,y,, . . . , y,) to second order in the nuclear displacements, including terms due to 
the first-order perturbations to I$) (Born and Huang 1966). Clearly, these higher-order 
terms will perturb both the zeroth order harmonic frequencies and the displaced 
origins evident in (15). However, neglecting these small corrections will not affect the 
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Figure 2. The probability distribution la(n)l' of internal excitation for the localized state is 
shown for two values of no (no = qu)  and no = $(b)) using appropriate values of the potential 
parameters (Collins and Craig 1983). The contraction of the chain accompanying the 
localization is also depicted, in terms of the relative displacements, I,. 

thrust of the argument, so we assume that the energy surface E,(y,, y,, . . . , y,) is an 
adequate approximation to the Born-Oppenheimer energy surface. 

The nuclear-energy state Ix>is then given by the solution of 

where 
2 

h,,= n =  c 1 %p"-p"+l)2+~ 1 { Y"+ 16(%+,M1)' sech' [4(D1 +M,)z(n-no)/M,,~} (17) 
N 

and E is the total nuclear eigenenergy. Here E is clearly the total acoustic phonon energy 

where vk is the quantum number for the kth phonon mode of frequency ok and k is the 
phonon wavenumber in the first Brillouin zone (Kittel 1963). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
7
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



208 M .  A .  Collins 

The total wavefunction is the usual product 

However, the equilibrium geometry 

16(0, +M1)3 
MO y =-  sech’ [4(D, + M,)’(n - no)/Mo] 

is determined by the arbritrary origin no. For each arbitrary choice of no, there 
corresponds a Born-Oppenheimer product (1 9). The same situation arises with 
molecular rotation, where each molecular orientation has an associated Born- 
Oppenheimer product of nuclear and electronic states referred to that particular origin. 
In this case we do not have a free rotor but rather a free particle whose position no is 
arbitrary. Using periodic boundary conditions on the chain of length N ,  the free 
particle becomes a particle in a box, whose wavefunctions are plane waves, exp {ikn,}, 
with wavenumbers k in the first Brillouin zone. 

Thus, the arbitrary choice of no is reflected in a Bloch-wave character for the total 
wavefunction: 

where a(n; no) is given by (13) for long chains and x is the corresponding product of 
harmonic phonon wavefunctions. 

The lowest energy eigenfunction corresponds to k=O. In so far as the Born- 
Oppenheimer approximation is valid, all the products Ix(no)) I+(no)> are energy 
eigenstates, so that the energy 

E =  ( ~ ( k = O ) l h l ~ ( k = O ) > / ( ~ ( k = O I ~ ( k = 0 ) )  (22) 

is just that of a single product ‘localized’ at no. 
Venzl and Fischer (1985) have used a trial function similar to (21) to evaluate the 

ground state in the case where D, is very large, the continuum approximation is no 
longer valid, and trapping may occur. In that case, numerical studies (Collins and Craig 
1983) show that only integer values of no correspond to a minimum on the Born- 
Oppenheimer energy surface, so that the integral of (21) becomes a sum. 

It is worth noting that there is no real contradiction between the Bloch-wave 
character of (21) and the concept of a localized soliton state of the system. The particle 
in a box has eigenfunctions for which, at given energy, the particle is equally likely to be 
at any point in the box. Nevertheless, the localization is reflected in the products of (19) 
with consequences for the observable properties. 

Moreover, to continue the analogy with the particle in the box or free rotor, it is 
sometimes appropriate to consider wavepacket superpositions rather than the 
stationary wavefunction of (21). The minimum uncertainty (time-dependent) wave- 
packet which sites the soliton initially at n, at rest is clearly of the fopm (Schiff 1968) 

- l/Z 

] exp { -(no - n,)Z/[4(An,)’ + 2ifiz/m,]} 

x X ( Y  Y,, . . . , Y,; no)&; no) (23) 
where C is a normalization constant, f i  = A(4km)- 112re;2, and (An,) is the initial (z = 0) 
uncertainty in the soliton position. The rate at which the ‘soliton wavepacket’ spreads is 
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Solitons in resonant energy transfer 209 

determined by the reduced soliton mass, m,. As we shall see below, this mass can be very 
large, which justifies the usual approach of employing classical mechanics to describe 
both the nuclear motion and consequently the soliton motion when transport rather 
than static properties are considered. 

The free-particle character of the localized state arises from the fact that there is no 
energy change produced by changing the origin, no. Thus we expect the localized state 
can move with uniform velocity. This is easily shown using classical mechanics for the 
time-dependent displacements: 

The internal state obeys the time-dependent Schrodinger equation 

aa 
iB = Cho + Ae-200 + D,(yn + Y n  + 1)lan - (Mo - ~ n ) a n  - 1 

-(Mo - M1 Yn + 1)an + 1 (25) 
where p = h(4km)-112rei2. 

like that of (13), moving with constant velocity. In the continuum limit we have 
Equations (24) and (25) do in fact have a solution which describes a localized state 

a(n, z) = exp { - iEz}a(n - vz) 

y(n, 7) = Y(n - v 4  
(26) 

(27) 

(28) 

(29) 

where 

y(n- vz)= (v2 - $ ) - ' 2 ( ~ ~  + kf,)(a(n-vvr)12 

a(n-vz)= [2(D1 +Ml)2M;1(1 - 4 ~ ~ ) - ~ ] ~ / ~ e x p  {ipv(n-vz)/2Mo} 

x sech [4(D1 +M1)2M;1(1 -4v2)-'(n-vz)] 

These equations describe a pulse like that in figure 2 moving with constant velocity. 
The velocity of sound in the chain is in these reduced units so that the reduced velocity 
v is always less than that of sound. The apparent mass of this soliton is given by (see 
Davydov 1982, for related results) 

m, = ~[E(v )  -E(V = 0)]/v2 (30) 

% 128(M1 +D1)4/(3M0) (31) 
using vc.3 and realistic values for the phonon frequencies. Clearly, when the soliton 
solution (13) is localized and the energy lies well below the exciton band, the soliton 
mass is large in comparison with the molecular mass. Then, a classical picture in which 
a stable localized excitation can be transported through the chain is valid, as the 
corresponding quantum wavepacket spreads only slowly. 

4. Conclusion 
We have seen how the coupling of resonant transport and molecular motions gives 

rise to a feedback mechanism that localizes energy in one-dimensional chains. While 
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210 Solitons in resonant energy transfer 

the actual site of localization is arbitrary, and this is reflected in the ground-state 
wavefunction, the combination of excitation localization and distortion of molecular 
positions is clearly physically significant. 

Most importantly, the stable localized excitation is mobile, though of large mass. 
Hence, the soliton may provide the mechanism by which large quanta of localized 
energy can be transported over large distances without spreading or loss. 
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